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A goniometric optical scatter instrument for bidirectional reflectance distribution
function measurements with out-of-plane and polarimetry capabilities
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ABSTRACT

A goniometric optical scatter instrument has been developed at the National Institute of Stan-
dards and Technology which can readily perform out-of-plane measurements of optical scatter as
well as polarimetric measurements. This paper uses the description of this instrument as a plat-
form to discuss key issues that must be addressed when developing either out-of-plane measurement
capabilities or polarimetric capabilities, or both at the same time. The transformation from the
sample coordinates to the instrument coordinates has been carried out, including the rotation of
the polarization coordinates for out-of-plane measurements. The out-of-plane instrument signature
that results from Rayleigh scatter in air is calculated and compared with measurement. Finally, the
results of some out-of-plane Mueller matrix BRDF measurements of the backside of a silicon wafer
are presented.
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1. INTRODUCTION

Optical scattering has been shown to be a powerful diagnostic technique for characterizing optical quality
surfaces.! The fundamental description of optical scattering can be encapsulated in the bidirectional reflectance
distribution function (BRDF), defined as the scattered radiance normalized by the incident irradiance, given by

0P, 1
f(0:, 6105, ¢s) = 5w B cosd,’ (1)
where 9®,/0w is the scattered power per unit solid angle, ®; is the incident power, 6 is the scattering polar
angle, ¢4 is the scattering azimuthal angle, 6; is the incident polar angle, and ¢; is the incident azimuthal angle,
as 1llustrated in Fig. 1. Although the BRDF is often reported as a polarization-averaged quantity, it should in
fact be a Mueller matrix, relating the scattered polarization state to the incident polarization state. Calculations,
and recent experimental results, have demonstrated that a wealth of information is included in the polarimetric
properties of many samples.?~'' Even more so, the polarimetric properties of scattering out of the plane of
incidence can allow making distinctions among different types of defects.?%

The Goniometric Optical Scatter Instrument (GOSI) has been described in a previous publication.!? This
article will elaborate on issues which are specific to performing polarimetric measurements out of the plane of
incidence, and describe modifications which have been made to the instrument since the previously described
work.

Section 2 will describe the instrument. In Sec. 3, the algorithms for converting between the goniometer angles
and the sample coordinate system will be derived. In Sec. 4, the instrument signature that arises due to Rayleigh
scattering in the air surrounding the sample will be derived, and the results compared to experiment. Finally, in
Sec. b, some experimental results of out-of-plane Mueller matrix measurements will be presented.



Figure 1 The sample coordinate system.
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Figure 2 An overall schematic of the Goniometric Optical Scatter Instrument (GOSI). The angles
6; and 05 are shown for the case of the sample normal lying in the plane of the page. (Not to scale.)

2. DESCRIPTION OF THE INSTRUMENT

Figure 2 shows an overall schematic diagram of GOSI. Light from one of three lasers, HeNe (633 nm),
frequency-doubled Nd:YAG (532 nm), and HeCd (442 nm or 325 nm), passes through a power stabilizer, a chopper,
a polarizer, a retarder (currently A/2) mounted on a computer controlled rotation stage, a lens, and a pinhole
before being directed and focussed with a super-polished concave mirror through the center of a goniometer. The
light is focused to the angle-defining aperture of a receiver.

Figure 3 shows a schematic diagram of the goniometer. It is a three-axis four-angle goniometer with « being
the angle of rotation of the sample about a vertical axis, # being the angle of rotation of the sample about a
horizontal axis which moves with «, y being an angle of rotation about the sample azimuth (moving with « and
3), and ¢ being the angle of rotation of the detector about the vertical axis. When a = 8 =y = ¢ = 0, the sample
is positioned so that the light is at normal incidence and the detector (if it were not blocking the incident light) is
positioned to collect the specularly reflected light (6; = 0; = 0). With this configuration nearly any combination
of incident and scattering directions can be achieved, being limited only by obscuration of either the incident
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Figure 3 A schematic diagram of GOSI’s goniometer. The angle v represents a rotation about the
sample normal.

PMT
A SH
y
. I
A I: : O
wp  poL_ FS SiPD
ROT IS

s
A3L

T

Figure 4 A schematic of the instrument’s receiver (not to scale): Aj, As, and Az are solid-angle-
limiting apertures, mounted on a translation stage T; L is a lens; WP is a A/2 retarder, mounted
on a rotation stage ROT; POL is a polarizer; FS is an adjustable iris field stop; IS is an integrating
sphere; PMT is a photomultiplier tube; SH is a manual shutter; and SiPD is a silicon photodiode.

or scattered beam by the sample mount (at angles # > 87°) or occultation of the incident beam by the receiver
(within 5° of retroreflection).

Figure 4 shows a schematic of the receiver. A computer-controlled translation stage selects one of three
collection-solid-angle-limiting apertures (A; = 1.17 x 107% sr, Ay = 2.39 x 107% sr, and Az = 9.6 x 1073 sr)
to optimize required angular sensitivity or collection efficiency. A lens (L) is positioned behind the apertures to
focus the sample plane onto an adjustable iris field stop (FS). A linear retarder (WP) (currently A/2) is mounted
onto a computer controlled rotation stage (ROT). A Glan-Thompson polarizer (POL) mounted onto a manual
rotary stage follows the retarder; during measurements, the polarizer is maintained fixed. After passing through
the field stop, the light is collected in an integrating sphere (IS). The lens, retarder, polarizer, and adjustable field



stop are enhancements to the current design which differ from the previous publication. The integrating sphere
has two ports, onto which two detectors, a silicon photodiode (SiPD) and a photomultiplier tube (PMT), are
mounted. The PMT has a manual shutter to prevent exposure to excessive light levels. The signal from either
the photodiode or the PMT is recorded by a lock-in amplifier. This receiver design has a linear dynamic range
of about 15 orders of magnitude (in units of sr=!), a minimum angular resolution of 0.02°, and a polarization
extinction factor of about 10%. The instrument signature is Rayleigh-scattering-limited within about 1° from the
specular direction.1?13

3. TRANSFORMATIONS
A. Converting Goniometer Angles to Sample Reference Frame Angles

The sample reference frame coordinate system is shown in Fig. 1. It is the purpose of this section to derive
the expressions necessary to convert the goniometer angles «, 3, v, and d to the sample coordinate system angles
i, &1, bs, and ¢5. In Sec. 3.B, the transformation will be inverted.

We begin by defining a coordinate system using the basis vectors {%X,¥,%} which is fixed with respect to the
laboratory. We then introduce the rotation matrix

Rsamp(aaﬁap)/) = R(yaa)R(&aﬁ)R(iaPY)’ (2)

where R(V,0) is the matrix which rotates the coordinate system an angle 6 clockwise about the vector ¥. The
matrix Rsamp, When acting upon a vector fixed with respect to the sample, first rotates it an angle v about %,
then an angle 7 about X, and finally an angle a about y. Written explicitly, this matrix is

Rsamp(aa ﬁa 7) =
cosa cosy —sina sin Fsiny  cosy sina sin § 4+ cosa siny  cos § sin«a (3)
—cos 3 siny cos 3 cosy —sin 3
—cosy sina —cosa sinff siny cosa cosy sinf —sina siny cos« cos 3

When o« = 0, § = 0, and v = 0, the sample is oriented such that the surface normal is in the Z direction.
The incoming propagation direction is

ki =-7, (4)

while for an arbitrary § the detection direction is given by

~

ks = R(¥,0)Z = sin 6% + cos 0Z. (5)

It is useful to define a new coordinate system fixed with respect to the sample such that for every # € {%,¥,%}
and # € {&',§', %'}, ¥’ = Reampi:

%' = [cosa cosy — sina sin 3 siny]% — cos 3 siny§ — [cos~y sin v + cos « sin 3 sin ]z, (6)
¥ = [cos~y sina sin 3 + cos « sin y]& + cos # cos ¥ + [cos a cosy sin § — sin a sin v]Z, (7)

and
7' = cos @sin aX — sin 8¥ + cos a cos fz. (8)

The primed coordinate system tracks the sample orientation in terms of the laboratory-based coordinate system.

It is now straightforward to determine the polar and azimuthal angles of the incoming and outgoing light.
The polar angles ; and 6, can be determined from the inner products of —Ri and Rs with the surface normal Z’,
respectively:

cos = —k; -2 = cos a cos 3 (9)



and
cosfy =k -2’ = cos 8 sina siné + cos a cos 3 cosd. (10)

For the azimuthal angles, ¢; and ¢4, we need the projections of k; and ks onto & and v,

o = arctan(—f{i %, -k ¥

= arctan(— cos ysin o — cos arsin Fsin v, cos v cos 7y sin 3 — sin asin %),

and R R
¢s = arctan(ks - ®' ke - §')
= arctan[ — cos J (cos+y sin« — cos & sin 3 sin=y) 4+ sind (cos o cosy — sin « sin 3 sin7) , (12)
sind (cosy sina sin § 4 cos a siny) + cosd (cos « cosy sin 3 — sin « sin )],

where the function arctan(z, y) gives the polar angle of (z, y):

arctan(y/x) e >0
_ ) 7+ arctan(—y/x) ifz <0
arctan(z,y) = /2 ifx =0andy >0 (13)
/2 ife=0andy <0

B. Converting Sample Reference Frame Angles to Goniometer Angles

In Sec. 3.A, we have calculated the sample-relative scattering angles when the goniometer angles are known.
However, it is often common to ask the opposite question, and inversion of the results of the last section can
be tricky. In this section, we obtain the goniometer angles corresponding to the desired incident and scattering
directions, defined by 6;, ¢;, b5, and ¢5. Since J is the angle made by the incoming and outgoing beams, we can
readily solve for it. Working in a coordinate system convenient to the sample it is apparent from the standard
formulae for polar-rectilinear transformations that

—k; = sin 6, cos ¢i%' + sin 0, sin ¢; ¥ + cos 6,7’ (14)
and
ky = sin 8, cos g%’ + sin b, sin ¢ ¥ + cos 0,7 (15)

Again, we use the dot product to calculate the cosine of the subtended angle,

~

cosd = k; - ki

= cos B cos 5 + cos ¢; cos ¢ sin b; sin O + sin ¢; sin ¢g sin #; sin bs.

(16)

Eq. 9 allows us to eliminate 7 from Eq. 10 and solve for the rotation of the sample about the vertical axis of the
goniometer, a:

cos By — cos 0; cos§
= arct 17
= aician ( cos ¢; sin ¢ ) (17)
By recognizing that
—k x k,
V= B S — 18
T (18)

Is a unit vector pointing in the vertical direction in the laboratory, and Z’ is the surface normal, 3 can be derived
from

_ki 1Es a
sin § = % g
|ki X ks| (19)



where we have used sind = |k; x kg|.

The easiest way to solve for the rotation of the sample about its normal, 7, is to calculate ¢! or ¢ for y = 0,
using Eqs. 11 and 12, and then set v = ¢s — ¢, = ¢i — ¢!. Therefore,

¥ = ¢s — arctan(— cos § sin a + sin & cos e, sin d sin e sin 3 + cos d cos ), (20)
where the function arctan(z, y) is treated as in Eq. 13.

The expressions above lead to intermediate singularities when & = 0 (retroreflection), for which o = 6; and
G = 0. Also, roundoff errors can lead to problems during in-plane measurements, when cos 8 = 1; values of
cos 3 > 1 should return 5 = 0.

C. The Polarization Coordinates

We will work under the assumption that the most natural basis vector set for studying the polarization of
scattered light is the p’ and §’ vectors associated with the plane of incidence for the incident light and the plane of
exitance for the exiting light. The planes of incidence and exitance are defined by the sample normal and k; and

ks, respectively. The basis vectors used to describe the polarization that are most convenient in the laboratory
frame are

§ =¥, (21)
f)l = A, (22)
§s = cos 0y + sin 0z, (23)
and
Ps = —X. (24)

When measuring the polarization properties of out-of-plane optical scattering, we must be aware that the incoming
and outgoing polarization analyzers must be rotated so that they remain in the sample coordinate system.
Therefore, we define a set of basis vectors

ki x 7
|ki X Z/|
Pl =k x §, (26)
ks x 7/
g; — Ai’ (27)
ks x 2’|
and
Pl =k x §. (28)

It can be verified that the four sets of unit vectors, {§;, pi, Ri}, {8, Ds, Rs},{§{, bl Ri}, and {8, p., Rs}, form right-
handed orthogonal coordinate systems. We need to know the angle ¢ that § and p! are rotated with respect to
8§ and pi, and the angle ¥ that 8, and p. are rotated with respect to §; and ps. As usual, these angles can be

determined by inner products with each other:

cos i = § -8 = Ll , (20)
\/cos? 3 sin® a + sin® 3
Sin g = pi-§ = cos 3 sin « (30)
' \/cos? Fsin’ o + sin® 6’
—2/2 si
cos s = 8§ - 8. V2 sin § (31)

- \/6—2c082ﬁ—2c082(a—é)—cos?(a—ﬁ—é)—cos?(oz—l—ﬁ—é)’



and

inthy = Pe -8, = —2+/2 cos 3 sin(a — J) . (32)
\V/6—2cos28—2cos2 (« —6) —cos2 (a— 3 —6) —cos2 (a+ —0)
The angles #; and ¥5 can then be readily computed from
¢ = arctan(cos ¥y, sin ;) = arctan(— sin 3, cos sin «), (33)
and
s = arctan(cos ¢, sin ¢5) = arctan(sin 3, cos Gsin(a — 4)). (34)

Once again, the function arctan(z, y) is defined by Eq. 13.

The elements of the Mueller matrix BRDF can be determined by rotating the two retarders, following the
description of Azzam.!* Dependent upon the configuration of the polarization optics, this transformation may be
applied to actively control the polarization selection during data collection, or to transform the Mueller matrix
after data collection.

4. THE INSTRUMENT SIGNATURE

For highly polished samples, the measured BRDF can deviate from the true surface BRDF as a result of
scattering in the air within the field of view of the receiver.1?13 In this section, the Mueller matrix BRDF that one
should measure for a perfectly smooth surface in an ambient air environment will be derived and compared with
experiment. This contribution to the signal should be subtracted from any measured signal in order to extract a
sample-specific BRDF.

The instrument signature I(Rl , Rz), defined as the radiant power normalized by the incident irradiance, under
conditions where Raleigh scattering in air dominates is given by,'3

booa lrov .

Ik ko) = Ih—— Nk 35
( 15 2) 0|sin912||01 02| ) ( )
where 2( )2
47 (n—1
LS CE (36)

n 1s the index of refraction of air, N 1s the number density of air, Irov 1s the diameter of the field of view at
the sample in a direction perpendicular to the viewing direction, and &1 and &5 are unit vectors in the directions
of the electric fields of the incident and scattered beams, respectively. At 20 °C, a wavelength of 532 nm, at
standard atmospheric pressure, Iy = 1.29 x 107% m~".

Figure 5 shows the various contributions to the instrument signature when the laser strikes a highly reflecting
sample. Five paths are shown radiating toward the detector. Path S is the surface-induced radiance intrinsic
to the sample. Path 1 is the Rayleigh scatter from the incident beam directed toward the detector without any
interaction with the surface. Path 2 is the Rayleigh scatter from the reflected beam, or light which interacts with
the surface first, and then with the air. Path 3 is the Rayleigh scatter from the image of the incident beam in the
surface, or light which interacts with the air first, then with the surface. Finally, path 4 is the Rayleigh scatter
from the image of the reflected beam in the surface, or light which reflects from the surface, scatters from the air,
and then reflects from the surface again. Considering the lengths of the paths of light within the field-of-view of
the receiver (assumed to be circular and centered on the illuminated spot and underfilling the sample), and the
different interactions with the surface outlined above, it can be shown that the equivalent BRDF resulting from
Rayleigh scatter in the plane of incidence and for simple polarization states is

s () = o {0 k) [+ ROGIR(O)] + 1ke k)[R + R0} (37)

" 2cos b,
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Figure 5 The contributions to the instrument signature.

where R(f) is the specular reflectance of the sample at an incident angle of 8, and k, is the specular direction.

When viewing the sample out of the plane of incidence, or when using polarization states which are neither
purely s- nor p-polarized, the results become more complicated, since the polarizations mix and the different
reflection coefficients for the two polarizations must properly be taken into account. The appropriate basis
vectors for describing the polarization of the incident and scattered light was derived in Sec. 3.C. The basis
vectors for describing the polarization of the specularly scattered incident light can be defined to be

i' (38)
and

Pl = (X% —3'y' +2'2) - B}, (39)
while the basis vectors for describing the light which is specularly reflected into the viewing direction are

8 =4 (40)

sr

and
~f ~d PN

bi = (X% -3y +2%) - pe. (41)

The Jones matrices for the geometric factors for the four terms can then be shown to be

P; -8y Pj Ps (42)
_ — COS ¢y cos 0 sin ¢y
o ( —cos fgsin ¢ sin @ sin B — cos O cos B; cos ¢ ) ’
e (088 08
rs(6i)Di: -8 7 (01)DY - De (13)

—rs(6;) cosbssin ¢ 7, (6;)(—sin b; sin b — cos B cos 6; cos ¢s)

_ ( —rs(6;) cos ¢ 75 (0;) cos 6; sin ¢ )



20 . , . , . , . , . ,

Calc. Meas.

p—>p
S—>S
—_ s—>p
‘TL
(7))
™~
g 10 - .
L
o
4
m
05k .
0.0 L== L
0 30 60 90 120 150 180

¢, (deg)

Figure 6 The measured polarized BRDF (s = s, p = s, s = p, and p — p) arising from Rayleigh
scatter in the field of view of the receiver. The curves represent the results of calculations described
in this paper.

. (44)
_ —rs(0s) cos ¢s 75 (0s) cos 65 sin ¢
o 7p(0s) cos b sin ¢ 7, (0s)(— sin b; sin s — cos O cos 6; cos ¢s) /7
and
Ju= ( ro(6s)rs (60)8), 8L v (0)ry(6)3], - DLy )
* rp(ﬁs)rs (gl)f){r : §sr rp(gs)rp(gi)f){r : f)ér (45)

_ =15 ()75 (6;) cos ¢s 75 (0s)rp(6:) cos 6; sin ¢

T\ —rp(Os)rs(6;) cosBssin g 1, (0s)rp (6) (sin 6; sin O — cos s cos 0 cos ¢s) /7
respectively. The r; and r, are the reflection coefficients for s- and p-polarized light, respectively. Since the phases
between all four terms are random, one must sum them in the Mueller representation (i.e. convert to Mueller
matrices using algorithms given in van de Hulst!® or Bohren and Huffman'®). The out-of-plane equivalent BRDF
is then

N Iyl 1 1
fRayleigh (ks) — 2TOV (Ml + M4) + = (MZ + MS):| ) (46)

2 cosfy | sin b sin O

where the M; are the Mueller representations of .J;, and 6, is the angle subtended by (6;, ¢;) and (0, ¢x) using
Eq. 16.

Figure 6 shows the results of a measurement of Rayleigh scattering in the presence of a highly polished silicon
wafer. The measurement of the BRDF was carried out with two fields of view ({poy = 58.1 mm and 11.5 mm)
so that any contribution from the sample, albeit small, could be subtracted. The results are presented as s — s,
p — p, s = p, and p — s polarized BRDFs. The curves shown in Fig. 6 are results of evaluating Eq. 46 with
lrov = 46.6 mm, and are in good agreement with the measurement.
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Figure 7 The p —> p, s = s, s = p, and p — s intensities (top) and the non-handed Mueller
matrix elements (bottom) for out-of-plane scattering from the rough backside of a silicon wafer.
The intensities are normalized by the sum of all four intensities, and the Mueller matrix elements
are normalized by the element my;. The incident angle §; and scattering angle 85 were 45°, and the
wavelength was 532 nm.

5. RESULTS AND DISCUSSION

A series of consecutive measurements of the Mueller matrix with no sample present should yield the unity
matrix and an estimate of random and systematic uncertainties in Mueller matrix measurements. Such a mea-
surement was carried out with eighty measurements and yielded

1

(8.1£0.9) x 10~*
(—4.241.7) x 107*

(524 1.7) x 10~*
0.9995 & 0.0001
(2.2+0.3) x 1073

(1.6 +0.7) x 10=*
(4.0 £0.9) x 10=*
1.0008 = 0.0001



The uncertainties quoted above are the standard deviation of the eighty measurements, and therefore are an
indication of the random uncertainty for a single measurement. The deviation of this matrix from the unity
matrix is an indication of systematic errors in the system. No systematic drift in the values was observed.

Figure 7 shows results of Mueller matrix measurements from the rough backside of a silicon wafer. Since the
retardations were both A/2; only the 3 x 3 non-handed matrix elements were measured. The results demonstrate
that even a surface as rough as the backside of a silicon wafer has structure in the Mueller matrix that should lead
to information about the scattering mechanisms. In fact, it can be shown that the data in Fig. 7 exhibits excellent
agreement with an incoherent sum of Rayleigh-Rice theory™17'® with a completely depolarizing contribution. An
understanding of the scattering from these rough surfaces should enable enhanced detection of particles and
defects on these materials, as well as improved emissivity models necessary for radiant thermometry during rapid
thermal processing. Further discussion of these data is beyond the scope of this paper and will be presented
elsewhere.

REFERENCES

[1] J. C. Stover, Optical Scattering: Measurement and Analysis, (McGraw-Hill, New York, 1990).

[2] E.R.Méndez, A. G. Navarrete, and R. E. Luna, “Statistics of the polarization properties of one-dimensional
randomly rough surfaces,” J. Opt. Soc. Am. A 12, 250716 (1995).

[3] D. L. Jordan, G. D. Lewis, and E. Jakeman, “Emission polarization of roughened glass and aluminum

surfaces,” Appl. Opt. 35, 3583-90 (1996).

[4] S.-M. F. Nee, “Polarization of specular reflection and near-specular scattering by a rough surface,” Appl.

Opt. 35, 3570-82 (1996).

[6] T. A. Germer, “Angular dependence and polarization of out-of-plane optical scattering from particulate
contamination, subsurface defects, and surface microroughness,” (submitted for publication.).

[6] T.A.Germer, C. C. Asmail, and B. W. Scheer, “The polarization of out-of-plane scattering from microrough
silicon,” (submitted for publication.).

[7] R.E.Luna, “Scattering by one-dimensional random rough metallic surfaces in a conical configuration: several
polarizations,” Opt. Lett. 21, 1418-20 (1996).

[8] W.S. Bickel, R. R. Zito, and V. Tafelice, “Polarized Light Scattering From Metal Surfaces,” J. Appl. Phys.
61, 5392 (1987).

[9] V. J.TIafelice, and W.S. Bickel, “Polarized Light-Scattering Matrix Elements for Select Perfect and Perturbed
Optical Surfaces,” Appl. Opt. 26, 2410-5 (1987).

[10] G. Videen, J.-Y. Hsu, W. S. Bickel, and W. L. Wolfe, “Polarized light scattered from rough surfaces,” J.
Opt. Soc. Am. A 9, 1111-8 (1992).

[11] E. Bahar, and M. A. Fitzwater, “Like- and cross-polarized cross sections for random rough surfaces: theory

and experiment,” J. Opt. Soc. Am. A 2, 2295-303 (1985).

[12] C. C. Asmail, C. L. Cromer, J. E. Proctor, and J. J. Hsia, “Instrumentation at the National Institute of
Standards and Technology for bidirectional reflectance distribution function (BRDF) measurements,” Proc.

SPIE 2260, 52-61 (1994).

[13] C. Asmail, J. Hsia, A. Parr, and J. Hoeft, “Rayleigh scattering limits for low-level bidirectional reflectance
distribution function measurements,” Appl. Opt. 33, 6084-91 (1994).

[14] R. M. A. Azzam, “Photopolarimetric measurement of the Mueller matrix by Fourier analysis of a single
detected signal,” Opt. Lett. 2, 148 (1978).

[15] H. C.v. d. Hulst, Light Scattering by Small Particles, (Dover, New York, 1981).



[16] C.F.Bohren, and D. R. Huffman, Absorption and Scattering of Light by Small Particles, (Wiley, New York,
1983).

[17] S. O. Rice, “Reflection of Electromagnetic Waves from Slightly Rough Surfaces,” Comm. Pure and Appl.
Math. 4, 351-78 (1951).

[18] D. E. Barrick, Radar Cross Section Handbook, (Plenum, New York, 1970).



	citation: Reprinted from "Scattering and Surface Roughness," Z.-H. Gu and A. A. Maradudin, Editors, Proc. SPIE 3141, 220-231 (1997)


